Exp. Physics V | Inst. of Physics
University of Würzburg

  • welcome

    The Nano-Optics Lab at the University of Würzburg welcomes you on our pages.

    Our mission is to obtain fundamental control over light-matter interaction by controling the flow of light at the nanometer scale down to the size of single atoms, molecules, and quantum dots.


    read more
  • recent publications

    all publications

    Mode-matching for optical antennas

    T. Feichtner, S. Christiansen & B.Hecht
    arXiv:1611.05399 (2016), DOI:

    Plasmonic cavity antenna

    The emission rate of a point dipole can be strongly increased in presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring e.g.~ohmic losses and non-negligible field penetration in metals at optical frequencies. Here we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

    Polarization dependence of plasmonic near-field enhanced photoemission from cross antennas

    P. Klaer, G. Razinskas, M. Lehr, X. Wu, B. Hecht, F. Schertz, H.-J. Butt, G. Schönhense, H. J. Elmers
    Appl. Phys. B 122:136 (2016)

    The field enhancement of individual cross-shaped nanoantennas for normal incident light has been measured by the relative photoemission yield using a photoemission electron microscope. We not only measured the electron yield in dependence on the intensity of infrared light (800 nm, 100 fs), but also the polarization dependence. In the normal incidence geometry, the electrical field vector of the illuminating light lies in the surface plane of the sample, independent of the polarization state. Strong yield variations due to an out-of-plane field component as well as changes in the polarization state described by the Fresnel laws are avoided. The electron yield is related to the near-field enhancement as a function of the polarization state of the incident light. The polarization dependence is well explained by numerical simulations.


    Investigation of the nonlinear refractive index of single-crystalline thin gold films and plasmonic nanostructures

    S. Goetz, G. Razinskas, E. Krauss, C. Dreher, M. Wurdack, P. Geisler, M. Pawłowska, B. Hecht, T. Brixner
    Appl. Phys. B 122:94 (2016)

    The nonlinear refractive index of plasmonic materials may be used to obtain nonlinear functionality, e.g., power-dependent switching. Here, we investigate the nonlinear refractive index of single-crystalline gold in thin layers and nanostructures on dielectric substrates. In a first step, we implement a z-scan setup to investigate ~100-µm-sized thin-film samples. We determine the nonlinear refractive index of fused silica, n2(SiO2) = 2.9 × 10−20 m2/W, in agreement with literature values. Subsequent z-scan measurements of single-crystalline gold films reveal a damage threshold of 0.22 TW/cm2 and approximate upper limits of the real and imaginary parts of the nonlinear refractive index, |n 2′(Au)| < 1.2 × 10−16 m2/W and |n 2″(Au)| < 0.6 × 10−16 m2/W, respectively. To further determine possible effects of a nonlinear refractive index in plasmonic circuitry, interferometry is proposed as a phase-sensitive probe. In corresponding nanostructures, relative phase changes between two propagating near-field modes are converted to amplitude changes by mode interference. Power-dependent experiments using sub-10-fs near-infrared pulses and diffraction-limited resolution (NA = 1.4) reveal linear behavior up to the damage threshold (0.23 times relative to that of a solid single-crystalline gold film). An upper limit for the nonlinear power-dependent phase change between two propagating near-field modes is determined to Δφ < 0.07 rad.


    Electromechanically Tunable Suspended Optical Nano-antenna

    K. Chen, G. Razinskas, T. Feichtner, S. Grossmann, S. Christiansen & B. Hecht
    Nano Letters 16, 2680 (2016)
    DOI: 10.1021/acs.nanolett.6b00323

    See also Research Highlight in Nature Photonics

    Artistic view of a suspended optical nano-antenna

    Coupling mechanical degrees of freedom with plasmonic resonances has potential applications in optomechanics, sensing, and active plasmonics. Here we demonstrate a suspended two-wire plasmonic nano-antenna acting like a nano-electrometer. The antenna wires are supported and electrically connected via a thin leads without disturbing the antenna resonance. As a voltage is applied, equal charges are induced on both antenna wires. The resulting equilibrium between the repulsive Coulomb force and the restoring elastic bending force enables us to precisely control the gap size. As a result the resonance wavelength and the field enhancement of the suspended optical nano-antenna (SONA) can be reversibly tuned. Our experiments highlight the potential to realize large bandwidth optical nanoelectromechanical systems (NEMS)


    Plasmonic nanoantenna design and fabrication based on evolutionary optimization

    T. Feichtner, O. Selig & B. Hecht
    ArXive (2015)
    DOI:

    Experimentally realizable evolutionary antenna

    Nanoantennas for light enhance light-matter interaction at the nanoscale making them useful in optical communication, sensing, and spectroscopy. So far nanoantenna engineering has been largely based on rules derived from the radio frequency domain which neglect the inertia of free metal electrons at optical frequencies causing phenomena such as complete field penetration, ohmic losses and plasmon resonances. Here we introduce a general and scalable evolutionary algorithm that accounts for topological constrains of the fabrication method and therefore yields unexpected nanoantenna designs exhibiting strong light localization and enhancement which can directly be "printed" by focused-ion beam milling. The fitness ranking in a hierarchy of such antennas is validated experimentally by two-photon photoluminescence. Analysis of the best antennas' operation principle shows that it deviates fundamentally from that of classical radio wave-inspired designs. Our work sets the stage for a widespread application of evolutionary optimization to a wide range of problems in nano photonics.


    Silica–gold bilayer-based transfer of focused ion beam-fabricated nanostructures

    X. Wu, P. Geisler, E. Krauss, R. Kullock & B. Hecht
    Nanoscale 7, 16427-16433 (2015)
    DOI: 10.1039/C5NR04262C

    cross antenna

    The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica–gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex situ transfer, a spin-coated poly(methyl methacrylate) film is used to carry the nanostructures so that the bilayer can be etched away after being peeled off. For the in situ transfer, using a micro-manipulator inside the FIB machine, a cut-out piece of silica on which a nanostructure has been fabricated is peeled off from the bulk substrate and thus carries the nanostructure to a target substrate. We demonstrate the performance of both methods by transferring plasmonic nano-antennas fabricated from single-crystalline gold flakes by FIB milling to a silicon wafer and to a scanning probe tip.


    Electrically driven optical antennas

    J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp & B. Hecht
    Nature Photonics 9, 582-586 (2015)
    DOI: 10.1038/nphoton.2015.141

    cross antenna

    Unlike radiowave antennas, so far optical nanoantennas cannot be fed by electrical generators. Instead, they are driven by light1 or indirectly via excited discrete states in active materials2, 3 in their vicinity. Here we demonstrate the direct electrical driving of an in-plane optical antenna by the broadband quantum-shot noise of electrons tunnelling across its feed gap. The spectrum of the emitted photons is determined by the antenna geometry and can be tuned via the applied voltage. Moreover, the direction and polarization of the light emission are controlled by the antenna resonance, which also improves the external quantum efficiency by up to two orders of magnitude. The one-material planar design offers facile integration of electrical and optical circuits and thus represents a new paradigm for interfacing electrons and photons at the nanometre scale, for example for on-chip wireless communication and highly configurable electrically driven subwavelength photon sources.


    Single-crystalline gold microplates grown on substrates by solution-phase synthesis

    X. Wu, R. Kullock, E. Krauss & B. Hecht
    Crystal Research and Technology 50, 595-602 (2015)
    DOI: 10.1002/crat.201400429

    sketch of a gold flake

    Chemically synthesized single-crystalline gold microplates have been attracting increasing interest because of their potential as high-quality gold films for nanotechnology. We present the growth of tens of nanometers thick and tens of micrometers large single-crystalline gold plates directly on solid substrates by solution-phase synthesis. Compared to microplates deposited on substrates from dispersion phase, substrate-grown plates exhibit significantly higher quality by avoiding severe small-particle contamination and aggregation. Substrate-grown gold plates also open new perspectives to study the growth mechanism via step-growth and observation cycles of a large number of individual plates. Growth models are proposed to interpret the evolution of thickness, area and shape of the plates. It is found that the plate surface remains smooth after regrowth, implying the applicability of regrowth for producing giant plates as well as unique single-crystalline nano-structures.


    Remote detection of single emitters via optical waveguides

    P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo & B. Hecht
    Phys. Rev. A 89, 053801 (2014)
    DOI: http://dx.doi.org/10.1103/PhysRevA.89.053801

    Mode intensity and incoupling efficiency of an optical fiber with spherical end facet

    The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.


    Coherent control of plasmon propagation in a nanocircuit

    C. Rewitz, G. Razinskas, P. Geisler, E. Krauss, S. Goetz, M. Pawlowska, B. Hecht & T. Brixner
    Phys. Rev. Applied 1, 014007 (2014)
    DOI: http://dx.doi.org/10.1103/PhysRevApplied.1.014007

    Artistic view of antenna excitation with two differently polarized pulses and the subsequent sorting according to polarization

    The miniaturization of optical devices is a prerequisite for broadband data-processing technology to compete with cutting-edge nanoelectronic circuits. For these future nano-optical circuits, controlling the spatial and temporal evolution of surface plasmons, i.e., propagating optical near fields at metal-insulator interfaces, is a key feature. Here, we design, optimize, and fabricate a nanoscale directional coupler with one input and two output ports, a device that is an essential element of nano-optical circuits. The directional coupler is based on a two-wire transmission line supporting two plasmonic eigenmodes that can be selectively excited. By manipulating the input polarization of ultrashort pulses and pulse pairs and by characterizing the light emitted from both output ports, we demonstrate open-loop ultrafast spatial and spatiotemporal coherent control of plasmon propagation. Because of the intuitive and optimized design, which exploits a controlled near-field interference mechanism, varying the linear input polarization is enough to switch between both output ports of the nanoscale directional coupler. Since we exploit the interference of a finite spectrum of eigenmodes, our experiments represent a very intuitive classical analogue to quantum control in molecules.

    Multimode plasmon excitation and in-situ analysis in top-down fabricated nanocircuits

    P. Geisler, G. Razinskas, E. Krauss, X. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. Huang, T. Brixner & B.Hecht
    Phys. Rev. Lett. 111, 183901 (2013)
    arXiv:1304.1737, DOI: http://dx.doi.org/10.1103/PhysRevLett.111.183901

    Artistic view of mode excitation, propagation, and detection

    We experimentally demonstrate synthesis and in situ analysis of multimode plasmonic excitations in two-wire transmission lines supporting a symmetric and an antisymmetric eigenmode. To this end we irradiate an incoupling antenna with a diffraction-limited excitation spot exploiting a polarization- and position-dependent excitation efficiency. Modal analysis is performed by recording the far-field emission of two mode-specific spatially separated emission spots at the far end of the transmission line. To illustrate the power of the approach we selectively determine the group velocities of symmetric and antisymmetric contributions of a multimode ultrafast plasmon pulse.

    all publications

  • Publications

    Researcher ID (Bert Hecht)
    Google Scholar (Bert Hecht)
    ORCID ID (Bert Hecht)

    latest publications

    The following articles have been copyrighted by the respective journals. When you download a copy, it is your duty to comply with any applicable rule. In particular, the per-copy fee indicated in the code on the first page should be paid through the copyright clearance center. If you don't know how to handle this use the regular link to the journal or we will send you a reprint by mail.


    20162015201420132012201120102009200820072006200520042003200220012000199919981996199519941993


      2016 ↑

    1. Mode-matching for optical antennas

    2. T. Feichtner, S. Christiansen & B. Hecht
      arXiv:1611.05399 (2016)

    3. Polarization dependence of plasmonic near-field enhanced photoemission from cross antennas

    4. P. Klaer, G. Razinskas, M. Lehr, X. Wu, B. Hecht, F. Schertz, H.-J. Butt, G. Schönhense, H. J. Elmers
      Appl. Phys. B 122:136 (2016)

    5. Electromechanically Tunable Suspended Optical Nano-antenna

    6. K. Chen, G. Razinskas, T. Feichtner, S. Grossmann, S. Christiansen & B. Hecht
      Nano Letters 16, 2680 (2016)

    7. Investigation of the nonlinear refractive index of single-crystalline thin gold films and plasmonic nanostructures

    8. S. Goetz, G. Razinskas, E. Krauss, C. Dreher, M. Wurdack, P. Geisler, M. Pawłowska, B. Hecht, T. Brixner
      Appl. Phys. B 122:94 (2016)

    9. Plasmonic nanoantenna design and fabrication based on evolutionary optimization

    10. T. Feichtner, O. Selig, & B. Hecht
      submitted
      arXiv: 1511.05438 (2016)

      2015 ↑

    11. Silica-gold bilayer-based transfer of focused ion beam-fabricated nanostructures

    12. X. Wu, P. Geisler, E. Krauss, R. Kullock & B. Hecht
      Nanoscale 7, 16427 (2015)

    13. Electrically-driven optical antennas

    14. J. Kern, R. Kullock, J.P. Prangsma, M. Emmerling, M. Kamp & B. Hecht
      Nature Photonics 9, 582 -586 (2015)
      arxiv:1502.04935

      Presse response:
      Article in "Die Welt" (in german)
      Article in "spektrum.de" (in german)
      Article in "Physik in unserer Zeit" (in german)

    15. Single-crystalline gold microplates grown on substrates by solution-phase synthesis

    16. X. Wu, R. Kullock, E. Krauss & B. Hecht
      Cryst. Res. Technol. 50, 595 (2015)

    17. Nanoscale confinement of all-optical switching in TbFeCo using plasmonic antennas

    18. T. Liu, T. Wang, A.H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. Graves, D. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stöhr, A. Tsukamoto, B. Hecht, A.V. Kimel, A. Kirilyuk, T. Rasing, H.A. Dürr
      Nano Letters 15, 6862-6868 (2015) arXiv:1409.1280 (2015)

    19. Robustness of plasmonic angular momentum con finement in cross resonant optical antennas

    20. P. Klaer, G. Razinskas, M. Lehr, K. Krewer, F. Schertz, X.-F. Wu, B. Hecht, G. Schönhense & H. J. Elmers
      Appl. Phys. Lett. 106, 261101 (2015)

    21. Mode-matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    22. M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, M. Finazzi
      Nature Nanotech. 10, 412–417 (2015)
      arxiv:1412.0698

    23. Emission engineering in germanium nanoresonators

    24. M. Celebrano, M. Baselli, M. Bollani, J. Frigerio, A.B. Shehata, A. Della Frera, A. Tosi, A. Farina, F. Pezzoli, J. Osmond, X. Wu, B. Hecht, R. Sordan, D. Chrastina, G. Isella, L. Duò, M. Finazzi & P. Biagioni
      ACS Photonics 2, 53–59 (2015)

      2014 ↑

    25. Shaping and spatiotemporal characterization of sub-10-fs pulses focused by a high-NA objective

    26. M. Pawlowska, S. Goetz, C. Dreher, M. Wurdack, E. Krauss, G. Razinskas, P. Geisler, B. Hecht & T. Brixner
      Phys. Rev. A 89, 053801 (2014)

    27. Remote detection of single emitters via optical waveguides

    28. P. Then, G. Razinskas, T. Feichtner, P. Haas, A. Wild, N. Bellini, R. Osellame, G. Cerullo & B. Hecht
      Phys. Rev. A 89, 053801 (2014)

    29. Coherent control of plasmon propagation in a nanocircuit

    30. C. Rewitz, G. Razinskas, P. Geisler, E. Krauss, S. Goetz, M. Pawlowska, B. Hecht & T. Brixner
      Phys. Rev. Applied 1, 014007 (2014)

      2013 ↑

    31. Multimode plasmon excitation and in-situ analysis in top-down fabricated plasmonic nanocircuits

    32. P. Geisler, G. Razinskas, E. Krauss, X. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. Huang, T. Brixner & B. Hecht
      Phys. Rev. Lett. 111, 183901 (2013)
      arXiv:1304.1737

      2012 ↑

    33. Evolutionary optimization of optical antennas

    34. T. Feichtner, O. Selig, M. Kiunke, B. Hecht
      Phys. Rev. Lett. 109, 127701 (2012)
      cover
      arXive:1204.5422

    35. Atomic-scale confinement of resonant optical fields

    36. J. Kern, S. Grossmann, N.V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J.C. Prangsma & B. Hecht
      Nano Letters, 12, 5504 (2012)
      arXiv:1112.5008
      press release "Atomic-scale confinement of resonant optical fields"
      coverage on pro-physik.de (german)

    37. Electrically connected resonant optical antennas

    38. J.C. Prangsma, J. Kern, A.G. Knapp, M. Kamp & B. Hecht
      Nano Letters 12, 3915 (2012)

    39. Spectral-interference microscopy for characterization of functional plasmonic elements

    40. C. Rewitz, T. Keitzl, P. Tuchscherer, S. Goetz, P. Geisler, G. Razinskas, B. Hecht, T. Brixner
      Optics Express 20, 14632 (2012)

    41. Dynamics of multi-photon photoluminescence in gold nanoantennas

    42. P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, G. Cerullo
      arXiv:1109.5475 (2012)

    43. Circular Dichroism Probed by Two-Photon Fluorescence Microscopy in Enantiopure Chiral Polyfluorene Thin Films

    44. M. Savoini, X. Wu, M. Celebrano, J. Ziegler, P. Biagioni, S.C.J. Meskers, L. Duò, B. Hecht & M. Finazzi
      J. Am. Chem. Soc. 134, 5832 (2012)

    45. Nanoantennas for visible and infrared radiation

    46. P. Biagioni, J.-S. Huang, & B. Hecht
      Rep. Prog. Phys. 75, 024402 (2012)
      arXiv:1103.1568 (2012)
      cover

    47. Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry

    48. C. Rewitz, T. Keizl, P. Tuchscherer, J.-S. Huang, P.Geisler, G. Razinskas, B. Hecht & T. Brixner
      Nano Letters 12, 45 (2012)

      2011 ↑

    49. Spontaneous Formation of Left- and Right-Handed Cholesterically Ordered Domains in an Enantiopure Chiral Polyfluorene Film

    50. M. Savoini, P. Biagioni, S. C. J. Meskers, L. Duo, B. Hecht & M. Finazzi
      J. Phys. Chem. Lett. 2, 1359–1362 (2011)

    51. Tailoring the interaction between matter and polarized light with plasmonic optical antennas

    52. P. Biagioni, X. Wu, M. Savoini, J. Ziegler, J.-S. Huang, L. Duò, M. Finazzi & B. Hecht
      Proc. of SPIE Vol. 7922, 79220C (2011)

      2010 ↑

    53. Fast quantitative single-molecule detection at ultralow concentrations

    54. P. Haas, P. Then, A. Wild, W. Grange, S. Zorman, M. Hegner, M. Calame, U. Aebi, J. Flammer & B. Hecht
      Anal. Chem. 82, 6299 - 6302 (2010) & supporting information

    55. Ultrafast splitters and switches on subwavelength plasmonic waveguides

    56. A. Reiserer, J.-S. Huang, B. Hecht & T. Brixner
      Optics Express,18, 11810 - 11820 (2010)

    57. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    58. J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J.C. Prangsma, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser & B. Hecht
      Nature Commun. 1 : 150 doi: 10.1038/ncomms1143 (2010)
      arXiv:1004.1961 (2010)

    59. Mode imaging and selection in strongly coupled nanoantennas

    60. J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni & B. Hecht
      Nano Lett. 10, 2105–2110 (2010)
      arXiv:1002.3887v1

      2009 ↑

    61. Near-field polarization shaping by a near-resonant plasmonic cross antenna

    62. P. Biagioni, M. Savoini, J.-S. Huang, L. Duo, M. Finazzi, & B. Hecht
      Phys. Rev. B 80, 153409 (2009)

    63. Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration

    64. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, G. Cerullo, S. Matefi-Tempfli, M. Matefi-Tempfli, B. Hecht, G. Cerullo, M. Finazzi
      Phys. Rev. B 80, 045411 (2009)

    65. Cross resonant optical antenna

    66. P. Biagioni, J.S. Huang, L. Duo, M. Finazzi, B. Hecht
      Phys. Rev. Lett. 102, 256801 (2009)

    67. Deterministic spatio-temporal control of nano-optical fields in optical antennas and nano transmission lines

    68. J.S. Huang, D.V. Voronine, P. Tuchscherer, T. Brixner, B. Hecht
      Phys. Rev. B 79, 195441 (2009)

    69. Impedance matching and emission properties of optical antennas in a nanophotonic circuit
    70. J.-S. Huang, T. Feichtner, P. Biagioni, B. Hecht
      Nanoletters 9(5), 1897 - 1902 (2009)

      2008 ↑

    71. Detection of transient events in the presence of background noise
    72. W. Grange, P. Haas, A. Wild, M.A. Wild, M. Calame, M. Hegner, B. Hecht
      J. Phys. Chem. B 112, 7140 (2008)

    73. A simple method for producing flattened atomic force microscopy tips
    74. P. Biagioni, J.N. Farahani, P. Mühlschlegel, H.-J. Eisler, D.W. Pohl, B. Hecht
      Rev. Sci. Instrum. 79, 016103 (2008)

      2007 ↑

    75. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy
    76. J.N. Farahani, H.-J. Eisler, D.W. Pohl, M. Pavius, Ph. Flückiger, Ph. Gasser, B. Hecht
      Nanotechnology 18, 125506 (2007)

      2006 ↑

    77. Absorption and fluorescence of single molecules
    78. J. Y. P. Butter, B. Hecht, B. R. Crenshaw, and C. Weder
      J. Chem. Phys. 125, 154710 (2006)

    79. Prospects of Resonant Optical Antennas for Nano-Analysis
    80. B. Hecht, P. Mühlschlegel, J. N. Farahani, H.-J. Eisler, D. W. Pohl, O. J. F. Martin, and P. Biagioni
      CHIMIA 60, 765 (2006)

    81. Fast determination of saturation intensity and maximum emission rate by single-emitter imaging
    82. J. Y. P. Butter and B. Hecht
      Optics Express 14 , 9350-9357 (2006)

    83. Single Hepatitis-B virus core capsid binding to individual nuclear pore complexes in HeLa cells
    84. Y. Lill, M. Lill, B. Fahrenkrog, K. Schwarz-Herion, S. Paulillo U. Aebi, and B. Hecht
      Biophys. J. 91, 3123-3130 (2006)

    85. Stark-shift microscopy
    86. S. Karotke, A. Lieb and B. Hecht
      Appl. Phys. Lett. 89, 023106 (2006)

    87. Aperture scanning near-field optical microscopy and spectroscopy of single terrylene molecules at 1.8 K
    88. J. Y. P. Butter and B. Hecht
      Nanotechnology 17, 1547-1550 (2006)

    89. Resorcin[4]arene Cavitand-Based Molecular Switches: Switching Mechanisms, Monolayer Investigations, Molecular Recognition, and Large Multinanometer-Sized Expansion/Contraction Motions
    90. V.A. Azov, A. Beeby, M. Cacciarini, A. G. Cheetham, F. Diederich,* M. Frei, J. K. Gimzewski, V. Gramlich, B. Hecht, B. Jaun, T. Latychevskaia, A. Lieb, Y. Lill, F. Marotti, A. Schlegel, R. R. Schlittler, P. J. Skinner, P. Seiler, Y. Yamakoshi
      Adv. Funct. Mater. 16, 147-156 (2006)

    91. Single-Molecule Spectroscopy of Uniaxially Oriented Terrylene in Polyethylene
    92. J.Y.P. Butter 1, B.R. Crenshaw, C. Weder, and B. Hecht
      Chem. Phys. Chem. 7, 261-265 (2006)

    93. Glue-free tuning fork shearforce microscope
    94. P. Mühlschlegel, J. Toquant, D. W. Pohl, and B. Hecht
      Rev. Sci. Instrum. 77, 016105 (2006)

      2005 ↑

    95. Optische Antennen
    96. B. Hecht, H.-J. Eisler, D.W. Pohl, O.J.F. Martin
      Physik in unserer Zeit 36, 209-210 (2005)

    97. Single quantum dot coupled to a scanning optical antenna: A tunable super-emitter
    98. J. Farahani, H.-J. Eisler, D.W. Pohl, B. Hecht
      Phys. Rev. Lett. 95, 017402 (2005)

    99. Resonant optical antennas
    100. P. Mühlschlegel, H.-J. Eisler, B. Hecht and D.W. Pohl
      Science 308, 1607-1609 (2005)

    101. Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip
    102. N.A. Janunts, K.S. Baghdasaryan, Kh.V. Nerkararyan and B. Hecht
      Optics Commun. 253, 118-124 (2005)

      2004 ↑

    103. Nano-optics with single quantum systems: One contribution of 13 to a Theme 'Nano-optics and near-field microscopy
    104. B. Hecht
      Phil. Trans. R. Soc. Lond. A 362, 881-899 (2004)

    105. Single dye molecules in an oxygen-depleted environment as photostable organic triggered single-photon sources
    106. Y. Lill and B. Hecht
      Appl. Phys. Lett. 84, 1665-1667 (2004)

      2003 ↑

    107. Synthesis and conformational switching of partially and differentially bridged resorcin[4]arenes bearing fluorescent dye labels - Preliminary communication -
    108. V.A. Azov, F. Diederich, Y. Lill, and B. Hecht
      Helv. Chim. Acta 86, 2149-2155 (2003)

    109. Three-dimensional optical polarization tomography of single molecules
    110. M. Prummer, B. Sick, B. Hecht, and U. P. Wild
      J. Chem. Phys. 118, 9824-9829 (2003)

    111. Single-molecule near-field optical energy transfer microscopy with dielectric tips
    112. W. Trabsinger, A. Kramer, M. Kreiter, B. Hecht, and U. P. Wild
      J. Microscopy 209, 249-253 (2003)

    113. Fabricating arrays of single proteins on glass using microcontact printing
    114. J. P. Renault, A. Bernard, A. Bietsch, B. Michel, H. R. Bosshard, E. Delamarche, M. Kreiter, B. Hecht, and U. P. Wild
      J. Phys. Chem. B, 107, 703-711 (2003)

      2002 ↑

    115. Orientation-dependent lifetime of single dye molecules at a dielectric interface
    116. M. Kreiter, M. Prummer, B. Hecht, and U. P. Wild
      J. Chem. Phys. 117, 9430-9433 (2002)

    117. A cryogenic scanning near-field optical microscope with shearforce gapwidth control
    118. A. Kramer, J.-M. Segura, A. Hunkeler, A. Renn, and B. Hecht
      Rev. Sci. Instrum. 73, 2937-2941 (2002)

    119. Continuous realtime measurement of fluorescence lifetimes
    120. W. Trabesinger, C.G. Hübner, B. Hecht and U.P. Wild
      Rev. Sci. Instrum. 73, 3122-3124 (2002)

    121. Single-molecule near-field optical energy transfer microscopy
    122. W. Trabesinger, A. Kramer, M. Kreiter, B. Hecht and U.P. Wild
      Appl. Phys. Lett. 81, 2118-2120 (2002)

    123. Optical near-field enhancement at a metal tip probed by a single fluorophore
    124. A. Kramer, W. Trabesinger, B. Hecht and U.P. Wild
      Appl. Phys. Lett. 80, 1652-1654 (2002)

      2001 ↑

    125. Photon statistics in single-molecule fluorescence at room temperature
    126. L. Fleury, J.M. Segura, G. Zumofen, B. Hecht and U.P. Wild
      J. of Luminescence 94, 805-809 (2001)

    127. Molecular Rearrangements observed by Single-Molecule Microscopy
    128. W. Trabesinger, A. Renn, B. Hecht, U.P. Wild, A. Montali, P. Smith, Ch. Weder
      Synthetic Metals 124, 113-115 (2001)

    129. Probing confined fields with single molecules and vice versa
    130. B. Sick, B. Hecht, U.P. Wild, L. Novotny
      J. Microscopy 202, 365-374 (2001)

    131. Statistical analysis of single-molecule colocalization assays
    132. W. Trabesinger, B. Hecht, U.P. Wild, G.J. Schütz, H.J. Schindler and T. Schmidt
      Anal. Chem. 73, 1100-1105 (2001)

    133. Tip-induced spectral dynamics of single molecules
    134. J.-M. Segura, G. Zumofen, A. Renn, B. Hecht, and U.P. Wild
      Chem. Phys. Lett. 340, 77-82 (2001)

      2000 ↑

    135. Phase behavior and anisotropic optical properties of photoluminescent polarizers
    136. A. Montali, A.R.A. Palmans, M. Eglin, C. Weder, P. Smith, W. Trabesinger, A. Renn, B. Hecht, U.P. Wild
      Macromol. Symp. 154, 105-116 (2000)

    137. Optical microscopy of single ions and morphological inhomogeneities in samarium-doped CaF2 thin films
    138. R. Rodrigues-Herzog, F. Trotta, H. Bill, J.-M. Segura, B. Hecht, U.P. Wild, H.J. Güntherodt
      Phys. Rev. B 62, 11163-11169 (2000)

    139. Orientational imaging of single molecules by annular illumination
    140. B. Sick, B. Hecht and L. Novotny
      Phys. Rev. Lett. 85, 4482 (2000)

    141. Single-molecule identification by spectrally and time-resolved fluorescence detection
    142. M. Prummer, C. Hübner, B. Sick, B. Hecht, A. Renn and U.P. Wild
      Anal. Chem. 72, 443 (2000)

    143. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications
    144. B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin and D.W. Pohl
      J. Chem. Phys. 112, 7761-7774 (2000)

    145. A sample-scanning confocal optical microscope for cryogenic operation
    146. J.-M. Segura, A. Renn, and B. Hecht
      Rev. Sci. Instrum. 71, 1706 (2000)

    147. Single-Molecule Imaging Revealing the Deformation-Induced Formation of a Molecular Polymer Blend
    148. W. Trabesinger, A. Renn, B. Hecht, U.P. Wild, A. Montali, P. Smith, C. Weder
      J. Phys. Chem. B 104, 5221 (2000)

    149. Non-classical photon statistics in single-molecule fluorescence at room temperature
    150. L. Fleury, J.M. Segura, G. Zumofen, B. Hecht, and U.P. Wild
      Phys. Rev. Lett. 84, 1148 (2000)

      1999 ↑

    151. High-quality Near-Field Optical Probes by tube etching
    152. R. Stöckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U.P. Wild
      Appl. Phys. Lett. 75, 160-162 (1999)

      1998 ↑

    153. High Photo-stability of Single Molecules in an Organic Crystal at Room Temperature observed by Scanning Confocal Optical Microscopy
    154. L. Fleury, B. Sick, G. Zumofen, B. Hecht, and U.P. Wild
      Mol. Phys. 95, 1333-1338 (1998)

    155. Einzelne Moleküle im Brennpunkt
    156. B. Hecht, B. Sick und U.P. Wild
      Bulletin ETHZ 269, 44-47 (1998)

    157. Influence of Detection Conditions on Near-field Optical Imaging
    158. B. Hecht, H. Bielefeldt, L. Novotny, H. Heinzelmann, and D.W. Pohl
      J. Appl. Phys. 84, 5873-5882 (1998)

    159. Implications to high resolution in near-field optical microscopy
    160. L. Novotny, B. Hecht, and D.W. Pohl
      Ultramicroscopy 71, 341-344 (1998)

    161. Quo Vadis, Near-Field Optics?
    162. D.W. Pohl, B. Hecht and H. Heinzelmann
      N. Garcia , M. Nieto-Vesperinas, and H. Rohrer (eds.), Toledo, Spain, 11-16 May 1997 NATO ASI Series E: Applied Sciences 348 (1998) 175 (Kluwer Academic Publishers)

      1997 ↑

    163. Optical Microscopy in the Nano-World
    164. D.W.Pohl, H. Bach, M.A. Bopp, A. Martin, V. Deckert, P. Descouts, R. Eckert, H.J. Güntherodt, C. Hafner, B. Hecht, H. Heinzelmann, T. Huser, M. Jobin, U. Keller, T. Lacoste, P. Lambelet, F. Marquis-Weible, O.J.F. Martin, A.J. Meixner, B. Nechay, L. Novotny, M. Pfeiffer, C. Philipona, T. Plakhotnik, A. Renn, A. Sayah, J.M. Segura, B. Sick, U. Siegner, G. Tarrach, R. Vahldieck, U.P. Wild, D. Zeisel, R. Zenobi
      Chimia 51, 760-767 (1997)

    165. Interference of locally excited surface plasmons
    166. L. Novotny, B. Hecht and D.W. Pohl
      J. Appl. Phys. 81 1798-1806 (1997)

    167. Facts and Artifacts in Near-Field Optical Microscopy
    168. B. Hecht, H. Bielefeldt, Y. Inouye, L. Novotny, and D.W. Pohl
      J. Appl. Phys. 81, 2492 (1997)

      1996 ↑

    169. Local Excitation, Scattering, and Interference of Surface Plasmons
    170. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye and D. W. Pohl
      Phys. Rev. Lett. 77, 1889-1892 (1996)

    171. Radiation Coupling and Image Formation in Scanning Near-Field Optical Microscopy
    172. D.W. Pohl, L. Novotny, B. Hecht, and H. Heinzelmann
      Thin Solid Films 273, 161-167 (1996)

    173. Instrumental Developments and Recent Experiments in Near-Field Optical Microscopy
    174. H. Heinzelmann, Th. Lacoste, Th. Huser, H.J. Güntherodt, B. Hecht, and D.W. Pohl
      Thin Solid Films 273, 149-153 (1996)

    175. Local Excitation of Surface Plasmons by TNOM
    176. B. Hecht, D.W. Pohl, and L. Novotny
      in Optics at the Nanometer Scale: Imaging and Storing with Photonic Near Fields, edited by M. Nieto-Vesperinas and N. Garcia NATO ASI Series E 319, Kluwer, Dordrecht (1996) 151-161

      1995 ↑

    177. Piezoresistive Cantilevers as Optical Sensors for Scanning Near-Field Microscopy
    178. P. Bauer, B. Hecht, and C. Rossel
      Ultramicroscopy 61, 127-130 (1995)

    179. `Tunnel' Near-Field Optical Microscopy:TNOM-2
    180. B. Hecht, D. Pohl, H. Heinzelmann, and L. Novotny
      Ultramicroscopy 61, 99-104 (1995)

    181. Light Confinement in Scanning Near-Field Optical Microscopy
    182. L. Novotny, D.W. Pohl, and B. Hecht
      Ultramicroscopy 61, 1-9 (1995)

    183. Scanning Near-Field Optical Probe with Ultrasmall Spot Size
    184. L. Novotny, D.W. Pohl, and B. Hecht
      Optics Letters 20, 970-972 (1995)

    185. Scanning Near-Field Optical Microscopy in Basel, Rüschlikon and Zürich
    186. H. Heinzelmann, Th. Huser, Th. Lacoste, H.-J. Guentherodt, D.W. Pohl, B. Hecht, L. Novotny, O.J.F. Martin, Ch. Hafner, H. Baggenstos, U.P. Wild, and A. Renn
      Optical Engineering 34, 2441-2545 (1995)

    187. Tunnel Near-Field Optical Microscopy:TNOM-2
    188. B. Hecht, D.W. Pohl, H. Heinzelmann, and L. Novotny
      in Near-Field Optics, edited by M.A. Paesler and P.J. Moyer Vol. 2535 (SPIE, Bellingham, 1995) 61-68

    189. `Tunnel' Near-Field Optical Microscopy:TNOM-2
    190. B. Hecht, D.W. Pohl, H. Heinzelmann, and L. Novotny
      in Photons and Local Probes, edited by O. Marti and R. Möller (Kluwer, Dordrecht, 1995) 93-107

    191. Forbidden Light Scanning Near-Field Optical Microscopy
    192. H. Heinzelmann, B. Hecht, L. Novotny,and D.W. Pohl
      J. Microscopy 177, 115-118 (1995)

    193. Combined Aperture SNOM/PSTM: TheBest of Both Worlds?
    194. B. Hecht, H. Heinzelmann, and D.W. Pohl
      Ultramicroscopy 57, 228-234 (1995)

      1994 ↑

    195. Near-Field Optical Spectroscopy of Individual Molecules in Solids
    196. W. E. Moerner, T. Plakhotnik, T. Irngartinger, U. P. Wild, D. W. Pohl, B. Hecht
      Phys. Rev. Lett. 73, 2764-2767 (1994)

      1993 ↑

    197. Near-field optical microscope
    198. B. Hecht and H. Heinzelmann and L. Novotny and D. W. Pohl
      Europ. Patent Application, Internat. Publication Nr. WO 95/10060 (1993)

    199. Direct Measurement of the Field Enhancement Caused by Surface Plasmons with the Scanning Tunneling Optical Microscope
    200. H. Bielefeldt, B. Hecht, S. Herminghaus, J. Mlynek, and O. Marti
      in Near Field Optics, edited by D.W. Pohl and D. Courjon NATO ASI Series 242 (Kluwer, Dordrecht, 1993) 281-286

    201. Near-Field Optical Measurement of the Surface Plasmon Field
    202. O. Marti, H. Bielefeldt, B. Hecht, S.Herminghaus, P. Leiderer, and J. Mlynek
      Optics Commun. 96, 225-228 (1993)

  • Research

    electrically connected antenne

    Nano-Opto-Electronics

    Interfacing electrons and photons at the nanometerscale may lead to ultrasmall light-emitting devices for computer screens or to ultrafast on-chip optical communication. We have developed electrically connected optical nanoantennas that serve as a platform for series of experiments in which electrons and photons interact strongly to produced new physical effects.

    Further reading:



    artistic view of a two-wire transmission line with mode detector

    Optical nanocircuitry

    Controlling the flow of optical frequency excitations at the nanometerscale has great potential for diverse applications such as integrated optical communication and on-chip optical sensing. We are able to selectively excited and control the propagation of different well-defined modes on two-wire transmission lines. Such modal control can be used to obtain routing of optical pulses according to criteria such as polarization.

    Further reading:



    strong coupling of a two-level system to a plasmonic resonator

    Nano Quantum Optics

    Strong coupling of a single quantum system to an optical resonator is a hallmark of quantum optics. It is characterized by the repeated coherent exchange of a single excitation between the emitter and the resonator. We study strong coupling of single emiters to plasmonic nanoresonantors at room temperature. We use AFM technology to position emitters within the ultrasmall subwavelength mode volumes of broadband plasmonic nanoresonantors. The goal is to achieve deterministic photon-atom interaction for quantum communication as well as the development of novel quantum optical imaging modalities.

    Technology

    Our mission is to obtain fundamental control over light-matter interaction by controling the flow of photons at the nanometer scale down to the size of single atoms, molecules, and quantum dots. We use optical nanoantennas and related plasmonic nanostructures as enabling devices.

    atomically flat single-crystal gold flake

    We rely on our ability to fabricate high-end single-crystalline gold nanostructures based on large, but very thin chemically grown single-crystal gold flakes. Using top-down nanostructuring methods, such as focussed ion-beam milling, we strive to obtain highest quality gold nanostructures with close to atomic precision.

    artistic view: atomically flat single-crystal gold flake

    Further reading:

  • Teaching

    Winter Term 2016/2017

    • Angewandte Physik III (Labor- und Messtechnik) mit Ergänzungen

      3+1St., Di. 8:25-9:45, Do. 14:15-15:50, Hörsaal 3

    • Biophysikalische Messtechnik in der Medizin (mit Übungen und Seminar)

      mit Prof. P. Jakob, Dr. S. Zabler, Dr. T. Fuchs 4 St. Fr. 14:00-17:00, SE 1

    • Seminar über spezielle Problem der Nano-Optik und Bio-Photonik

      2 St., Mo 14:00-16:00.




    Summer Term 2016

    • Einführung in die Physik 2 (Elektrizitätslehre, Magnetismus, Atomphysik) für Studierende eines physikfernen Nebenfachs (allg. Naturwissenschaften, Biomedizin und Zahnheilkunde)

      4 St., Mo & Do 12-14, HS 1

    • Nano-Optics

      3 St., Do 14-17, SE 1

    • Labor- und Messtechnik in der Biophysik (mit Übungen und Seminar)

      (mit Prof. Dr. P. Jakob, Prof. Dr. M. Sauer, Dr. K. Heinze)
      4 St., Fr 14:00-17:00, SE 1

    • Seminar über spezielle Problem der Nano-Optik und Bio-Photonik

      2 St., Mo 14:00-16:00.




    Winter Term 2015/2016

    • Angewandte Physik III (Labor- und Messtechnik) mit Ergänzungen

      3+1St., Mo. 11:15-12:45, Mi. 13:15-14:45, Hörsaal P

    • Biophysikalische Messtechnik in der Medizin (mit Übungen und Seminar)

      mit Dr. V. Behr 4 St. Fr. 14:00-17:00, SE 1

    • Seminar über spezielle Problem der Nano-Optik und Bio-Photonik

      2 St., Mo 14:00-16:00.




    Summer Term 2015

    • Nano-Optics

      3 St., Do 14-17, SE 1

    • Labor- und Messtechnik in der Biophysik (mit Übungen und Seminar)

      (mit Prof. Dr. P. Jakob, Prof. Dr. M. Sauer, Dr. K. Heinze)
      4 St., Fr 14:00-17:00, SE 1

    • Hauptseminar

      (mit Prof. Dr. R. Claessen) 2 St., Fr 12:00-14:00, HS P

    • Seminar über spezielle Problem der Nano-Optik und Bio-Photonik

      2 St., Mo 14:00-16:00, F-071 Gruppenseminar, Gäste sind willkommen




    Winter Term 2014/2015

    • Freisemester





    Summer Term 2014

    • Nano-Optics 3 St., Do 14-17, SE 1

    • Labor- und Messtechnik in der Biophysik (mit Übungen und Seminar)

      (mit Dr. V. Herold, Prof. Dr. M. Sauer, Dr. K. Heinze, Prof. Dr. C. Hoffmann) 4 St., Fr 14:00-17:00, SE 1

    • Physik für Studierende der Medizin im 1. Fachsemester

      4 St., Di, Mi, Do, Fr, 8:25 -9:10, Biozentrum

    • Seminar über spezielle Problem der Nano-Optik und Bio-Photonik

      2 St., Mo 14:00-16:00, F-071 Gruppenseminar, Gäste sind willkommen

  • The team

    • Bert Hecht

      Prof. Dr. Bert Hecht

      Group leader

    • Dr. Rene Kullock

      Dr. René Kullock

      Post Doc

      electrically driven optical antennas

    • Dr. Xiaofei Wu

      Dr. Xiaofei Wu

      Post Doc

      nano drones

    • Dipl. Phys. Swen Grossmann

      PhD student

      nonlinear plasmonics

    • Heiko Gross

      M.Sc. Heiko Gross

      PhD student

      strong coupling of single quantum emitters to plasmonic resonators.

    • Enno Krauss

      Dipl. Phys. Enno Krauss

      PhD student

      plasmonic nano circuitry

    • Daniel Friedrich

      Dipl. Phys. Daniel Friedrich

      PhD student

      quantum nanoscopy

    • Phillip Grimm

      Dipl. Phys. Philipp Grimm

      PhD student

      electrically driven optical antennas

    • Gary Razinskas

      Dipl. Phys. Gary Razinskas

      PhD student

      plasmonic nano circuitry

    • Monika Emmerling

      Monika Emmerling

      Technical assistant

  • Alumni

    • Jord Prangsma

      Dr. Jord Prangsma

      Scientist

      FaunaPhotonics

    • Paolo Biagioni

      Prof. Dr. Paolo Biagioni

      Professor

      Politecnico di Milano

    • Jer-Shing Huang

      Prof. Dr. Jer-Shing Huang

      Group leader

      Leibniz IPHT Jena

    • Dr. Johannes Kern

      Dr. Johannes Kern

      Post doc

      Bratschitsch group, University of Münster, Germany

    • Peter Geisler

      Dipl. Ing. Peter Geisler

      Scientist

    • Andres Guerrero

      Dr. Andres Guerrero

      Investigador Ramón y Cajal (Universidad Complutense)

    • Thorsten Feichtner

      Dr. Thorsten Feichtner

      Post Doc

      HZ Berlin

    • Patrick Then

      Dr. Dipl.-Ing. Patrik Then

      Post Doc

      Leibniz IPHT Jena

  • News & events

    The latest news


    • new group homepage!

    • Suspended optical antenna highlighted in Nature Photonics
      see "Reconfigurable resonance" by Noriaki Horiuchi.

    • Nano-drone proposal granted within VW EXPERIMENT! funding line of the Volkswagen foundation.

    News Archive
  • how to find us

    the institute of physics is located at

    Hubland Campus Süd,
    Am Hubland,
    Würzburg, D - 97074

    Office: B-032

    Phone: +49 931 318 5863

    FAX: +49 931 318 5851

    E-mail:
    hecht@physik.uni-wuerzburg.de

    view map

    contact form

    Contact form submitted!
    We will be in touch soon.
  • Map

  • impressum

    Lehrstuhl für Experimentelle Physik 5 (Biophysik)

    Prof. Dr. Bert Hecht
    Am Hubland
    97074 Würzburg

    Sekretariat

    Hiltrud Eaton
    Tel.: +49 (0) 931 - 888-5867
    Fax.:+49 (0) 931 - 888-5851
    Mail: ep5-sek@physik.uni-wuerzburg.de

    Webmaster

    Bert Hecht (hecht@physik.uni-wuerzburg.de)

    Design und Fotos

    Bert Hecht (hecht@physik.uni-wuerzburg.de)

    Urheberrechtshinweis

    Der Download bereitgestellter Texte ist ausschließlich zum privaten Gebrauch gestattet. Nutzungen der Daten zu anderen Zwecken bedürfen der schriftlichen Zustimmung.

    Haftungsausschluss

    Trotz sorgfältiger inhaltlicher Kontrolle übernehmen wir keine Haftung für die Vollständigkeit, Richtigkeit oder die Inhalte externer Links. Für den Inhalt der verlinkten Seiten sind ausschließlich deren Betreiber verantwortlich.

  • Jobs

    Master Theses

    We always offer intersting research projects for Master students. Here is a selection:

    Bachelor Theses

    We always offer interesting and well planned small research projects for Bachelor students. Here is a selction of topics: For further information please refer to the EP V postings or visit the group.

    PhDs & Postdocs

    If you are interested in joining us for a PhD thesis or a postdoc stay please contact us!

  • 01. lorem ipsum

    Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Praesent vestibulum molestie lacus.

    WAenean nonummy hendrerit mauris. Phasellus porta. Fusce suscipit varius mi. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Nulla dui. Fusce feugiat malesuada odio. Morbi nunc odio, gravida at, cursus nec, luctus a, lorem. Maecenas tristique orci ac sem. Duis ultricies pharetra magna. Donec accumsan malesuada orci. Donec sit amet eros. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Mauris fermentum dictum magna. Sed laoreet aliquam leo. Ut tellus dolor, dapibus eget, elementum vel, cursus eleifend, elit. Aenean auctor wisi et urna.

    Aliquam erat volutpat. Duis ac turpis. Integer rutrum ante eu lacus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

    Praesent vestibulum molestie lacus. Aenean nonummy hendrerit mauris. Phasellus porta. Fusce suscipit varius mi. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Nulla dui. Fusce feugiat malesuada odio. Morbi nunc odio, gravida at, cursus nec, luctus a, lorem. Maecenas tristique orci ac sem. Duis ultricies pharetra magna. Donec accumsan malesuada orci. Donec sit amet eros. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

    Praesent vestibulum molestie lacus. Aenean nonummy hendrerit mauris. Phasellus porta.

    Fusce suscipit varius mi. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Nulla dui. Fusce feugiat malesuada odio. Morbi nunc odio, gravida at, cursus nec, luctus a, lorem. Maecenas tristique orci ac sem. Duis ultricies pharetra magna. Donec accumsan malesuada orci. Donec sit amet eros. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Mauris fermentum dictum magna. Sed laoreet aliquam leo. Ut tellus dolor, dapibus eget, elementum vel, cursus eleifend, elit. Aenean auctor wisi et urna. Aliquam erat volutpat. Duis ac turpis. Integer rutrum ante eu lacus.